
E T L A B O R A

Т О Р

Fig 1. Urban Cairn. A human-made material stack, raised for a purpose.

Fig 2. A linear scaffold structures the bus stop, broken at critical junctures to accommodate through-ways and lines of habit.

B O T T O M

C O N C E P T

Deconstructed building material: collected, categorised, analysed, and iteratively assembled as a collective act of construction around a skeletal frame that sets out the ambitions of an architecture of temporal addition.

The proposal is for an urban cairn: a human-made material stack, raised for a purpose. Passers-by contribute time, work, matter, and elements, generating a marker in the city: a monument interrupting the manner of everyday life.

A linear scaffold structures the bus stop, broken at critical junctures to accommodate through-ways and lines of habit. The material properties and structural constraints of the construction method define a physical form of deep buttresses, creating occupiable rooms in the city. This innovative approach transforms ordinary urban infrastructure into engaging and functional public spaces.

R E S O U R C E

The physical, temporal, and human and construction practices.

Current construction processes are untenable; our contemporary built environment is manufactured from petrochemical-based, extractive materials that are detrimental to human and planetary health. Warranties, proprietary systems, and insurance requirements shorten material and building component lifespans and limit our ability to maintain and repair the city.

Our material language must change to utilise circular and regenerative materials that are carbon-sequestering and non-extractive. The shorter lifespan of these materials will require ongoing remaking of the city and its architecture, rejecting the notion of a complete building and establishing resources as the primary design tool. This paradigm shift encourages sustainable practices and adaptive reuse, fostering a resilient urban environment.

E L E M E N T

Deconstruction becomes the act of (re)framing the elements of construction as art-tectonic artefacts, positioning individual objects as subjects and thus as items of value. The cyclical processes of construction in the city present an opportunity for material reuse afforded by mining the city. The materials found, extracted, and repurposed define the spatial proposal, promoting a sustainable and innovative approach to urban development.

M O N U M E N T

Monument, from the Latin verb 'Monere' - to remind. (Re)construction is remembering: the bringing together of the elemental into a novel and unexpected scenography, onto which fresh meaning might be layered and stories told and retold.

Yet, 'Monere' can also be translated as 'to warn'. Thus, construction serves as a testament in opposition to a way of building. And so, when assembled, materials extracted from individual buildings become legible, creating a stratigraphic reading of the deconstructed built environment. This layered narrative invites reflection on past practices while advocating for a more sustainable future.

The physical, temporal, and human limits of architecture. Resource is the defining factor in the spatial and aesthetic resolution of design

M A N N E R

In 1967, Richard Long stepped out of a car, walked into a field, and looked back. The work he created that morning birthed an extraordinary and seminal landscape-art series: subtle, fragile, impermanent, and at times virtually imperceptible.

Yet, in the fundamental act of walking, Long came to discover that memory is but the interruption of habit. Thus, the banality of waiting for a bus becomes a moment of profound and extraordinary potential; as lines of habit and ritual become channels of improvisation, anarchy, and deepened meaning. This perspective transforms everyday actions into opportunities for artistic and architectural intervention, enriching the urban experience.

W O R K

The development of architecture is most often explained as the result of social and cultural processes. Far more rarely is architecture viewed in terms of the economics and politics of construction.

Yet, architecture has long tracked and registered the nature of labour. Archaeology provides evidence that the construction process has served as a fundamental social ritual, employed by institutions of power to manifest their governance—an outlook depicting building as an integral aspect of statecraft.

However, the highly organised nature of the construction site resulted in a division between intellectual and manual labour. This dichotomy was perhaps initially formalised by Alberti in 'De re aedificatoria', defining architectural labour not as an abstraction of construction but as superior to the building site.

Digital technologies have the potential to reverse the Albertian paradigm, (re)collapsing the territory between the intellectual exercise of design and the practice of building, generating extraordinary horizontality and freedom. This integration can democratise the construction process, fostering collaboration and innovation across all levels of architectural practice.

ΤΙΜΕ

Ruskin's Lamp of Memory depicted his appreciation of the passage of time upon a building, postulating that its historical dimension the physical manifestation of the ageing building—constituted the 'glory' of a monument. When construction is slowed, time becomes as elemental to construction as (mass) itself. As both a co-opting of the age value of 'waste' materials and an alternative spatial proposal, Et Labora becomes a contextual response in four dimensions.

The proposal responds to multitudinous temporal contexts: the formation of raw construction materials, partial destruction and disassembly, to the iterative construction of a new monument that begins to exist in one moment and lasts beyond. Within the context of reuse and a new valuing of resources, the architectural response of rebuilding positions itself between conservation and restoration. This approach honours the past while adapting to contemporary needs, creating a dynamic and sustainable urban landscape.

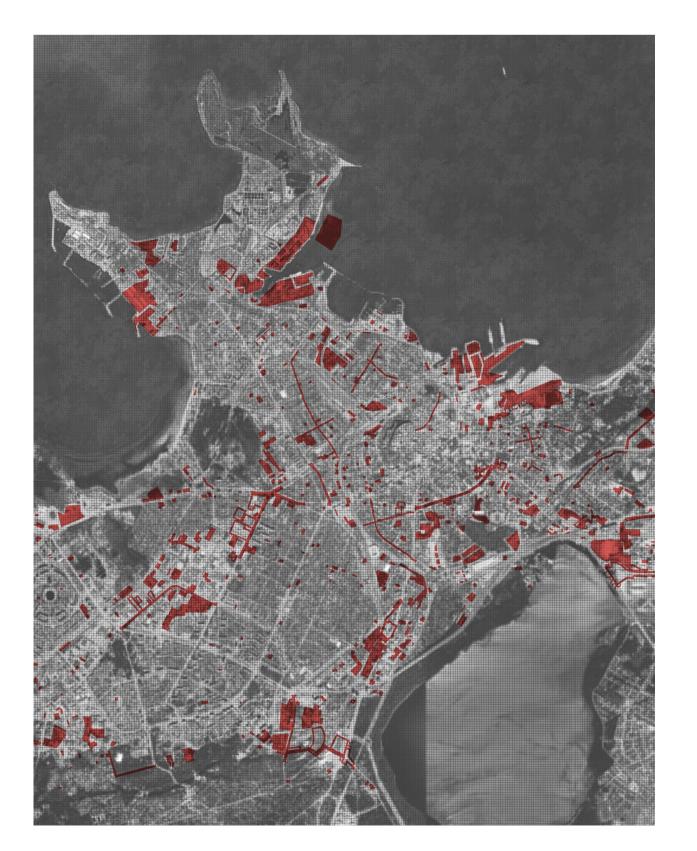
M A T T E R

In 1875, John Ruskin drew a burnt clod of brickwork as a sublime world, a topography of billowing moss, serrated crevasses, and burning deserts (fig 5). This renewed focus on the tangible aspects of construction perhaps found its most striking manifestation in Ruskin's notion of the 'Wall Veil.' In contrast to the conventional Vitruvian approach to the surface, Ruskin asserts that architectural massing should convey the inherent forces responsible for its existence.

This view ran counter to the dominant, prevailing urban-theoretical models, which viewed the city as inherently corporeal. Instead, Ruskin viewed the city as essentially geological. Just as land is contingent on and is the expression of the fundamental forces from which it is created, so too, the city should manifest the guttural tectonics of its creation; in other words, the city must reflect, more and more, those who physically make it. This perspective advocates for an architecture that is deeply rooted in its material and human context, fostering a more authentic and sustainable built environment.

Deconstructed building material: collected, categorised, analysed and iteratively assembled.

LEFT


Fig 3. No 1., Sclater Street, London. Existing condition

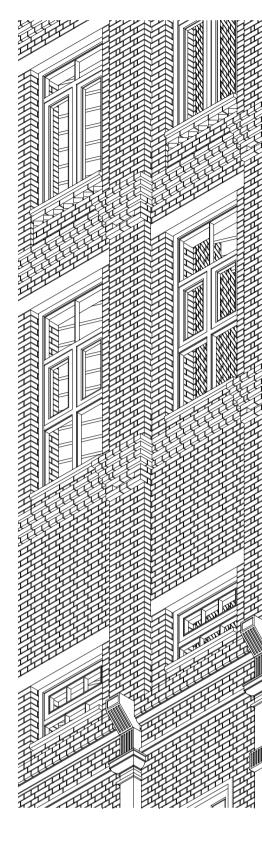
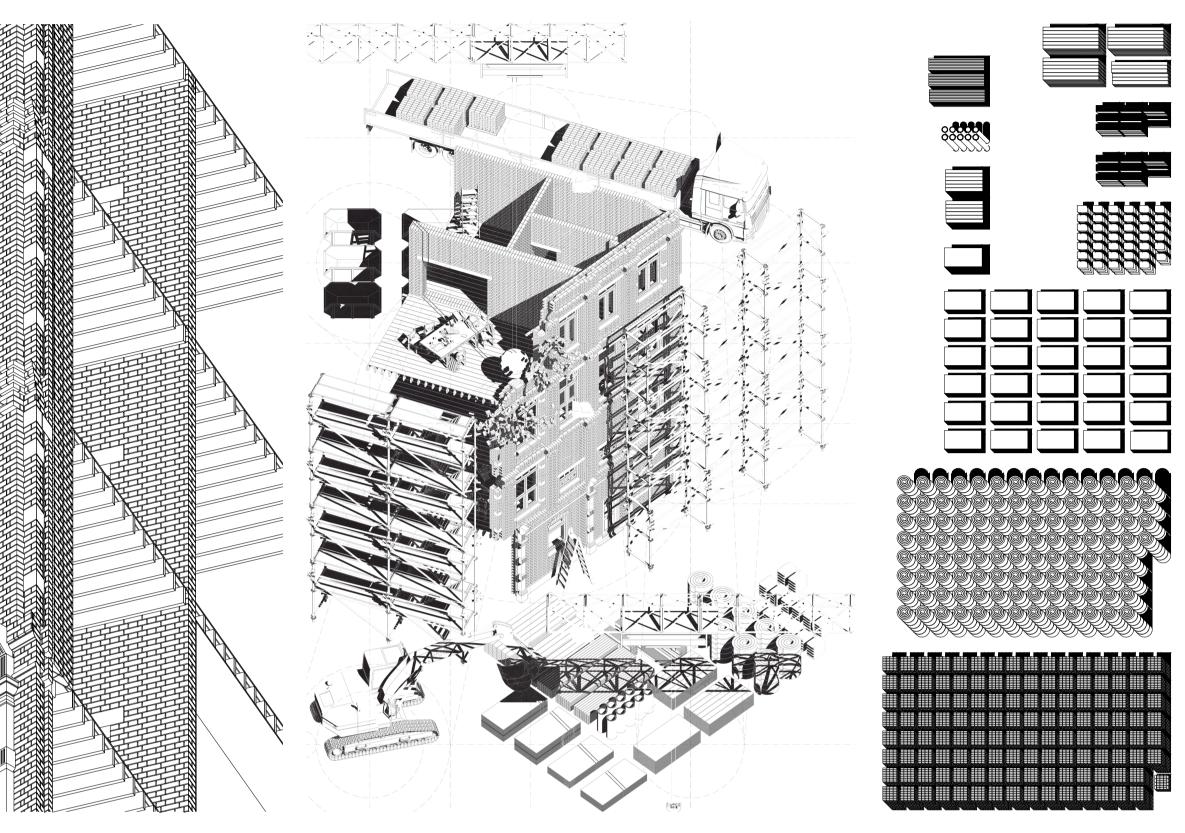
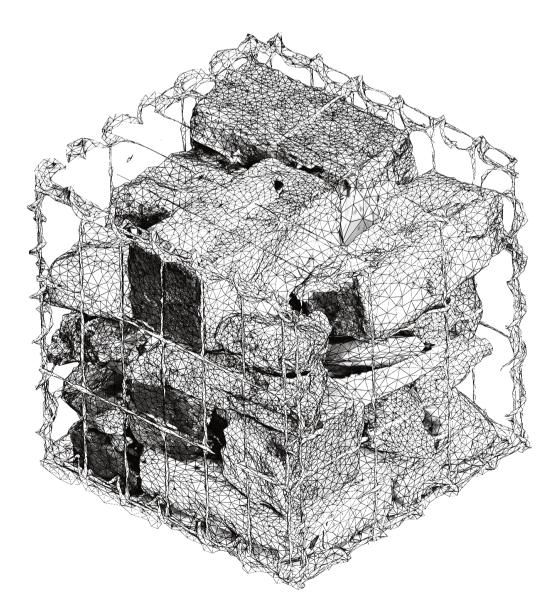

- Fig 4. Collected: material acquired following deconstruction and disassembly
- Fig 5. Categorised: material sorted by volume, weight and density


Fig 6. Analysed: material data collated and compared


- Fig 7. Tallinn development map and material reuse opportunities (Data retrived from Citify)
- Fig 8. Iteratively: material arranged in a car Park
- Fig 9. Assembled: material prior to construction Fig 10. Resource: a new unit of building

R I G H T



				m	~	**2	-	'Allow'		1 1	c	1	
Brick	Brick	48480			211	U	69,445	215	NJ VOZE /	232.492	Per 1000kg	24007.682 BREG EN EPD No.: https://www.wienerbe	.: https://www.v
Cast iron column	Iron												
Retroactive cavity wall insulation	Glass mineral blowing wool	251	1200x550x250 mm	1.200 0.550 0.250	27.915	414.538	41,454	100	0.04	1.13	Per 1m2	468.428 S-P-10890	https://api.e
Distribut	Gynelin	134	www.chulukowww	2 400	77 D4E	207 404	1010	CF C711	0.25		5	1 ET DEE C D DORER	-Mana-Ilani g
Plasterboard	Gypsum plasterboard	30	1200x2400x12 mm	1.200 2.400 0.012	27.915	387.181	4.646	a 12	0.25		Per 0.039m3	157.255 S-P-09656	https://api.environde
r laster Skirting hoard	MDE	39 76		0 119	111 660	0 003	0.300	c	0.10	_783	Per 1m3	-305 655 S.P.01851	https://api.etivii/01/02
Architrave	MDF	76	1400x119x18 mm	2.400 0.119 0.018	111.660	0.003	0.390			-783	Per 1m3	-305.655 S-P-01851	https://api.environde-
Architrave	MDF	86	1400x119x18 mm	0.119	126.916	0.003	0.444			-783	Per 1m3	-347.416 S-P-01851	https://api.environde
Skirting board	MDF	86	1400x119x18 mm	2.400 0.119 0.018	126.916	0.003	0.444			-783	Per 1m3	-347.416 S-P-01851	https://api.environde
Plaster	Gypsum plaster	46	25.000 kg		126.916	455.628	1.367			0.124	Per 1kg	143.900 S-P-09660	https://api.environde
Plasterboard	Gypsum plasterboard	165	1200x2400x12 mm	1.200 2.400 0.012	126.916	455.628	5.695			1.32 F	Per 0.039m3	192.766 S-P-09656	https://api.environde
Brick	Brick	45140					64.660			232.492	Per 1000kg	22353.687 BREG EN EPD No .:	b.: <u>https://www.wienerby</u>
Plasterboard	Gypsum	165	1200x2400x12 mm	1.200 2.400 0.012	126.916	455.628	5.695			1.32 F	Per 0.039m3	192.766 S-P-09656	https://api.environde
Plaster	Gypsum plaster	46	25.000 kg		126.916	455.628	1.367			0.124	Per 1kg	143.900 S-P-09660	https://api.environde
Skirting board	MDF	86	1400x119x18 mm	2.400 0.119 0.018	126.916	0.003	0.444			-783	Per 1m3	-347.416 S-P-01851	https://api.environde
Architrave	MDF	86	1400x119x18 mm	2.400 0.119 0.018	126.916	0.003	0.444			-783	Per 1m3	-347.416 S-P-01851	https://api.environde
Architrave	MDF	51	1400x119x18 mm	2.400 0.119 0.018	74.552	0.003	0.261			-783	Per 1m3	-204.076 S-P-01851	https://api.environde
Skirting board	MDF	51	1400x119x18 mm	2.400 0.119 0.018	74.552	0.003	0.261			-783	Per 1m3	-204.076 S-P-01851	https://api.environde
Plaster	Gypsum plaster	27	25.000 kg		74.552	267.642	0.803				Per 1kg	84.529 S-P-09660	https://api.environde
Plasterboard	Gypsum plasterboard	76	1200x2400x12 mm	1.200 2.400 0.012	/4.552	267.642	3.346			1.32	Per 0.039m3	113.233 S-P-09656	https://api.environde
Timber Stud	Timber	232	3600x85x40 mm	3.600 0.085 0.040	74.552	267.642	2.844			-698	Per 1m3	-1984.898 S-P-02150	https://api.environde
Accoustic Insulation	Glass mineral blowing wool	121	1200x550x250 mm	1.200 0.550 0.250	74.552	267.642	19.906			1.13	Per 1m2	302.435 S-P-10890	https://api.environde
Plasterboard	Gypsum	97	1200x2400x12 mm	1.200 2.400 0.012	74.552	267.642	3.346			1.32 F	Per 0.039m3	113.233 S-P-09656	https://api.environde
Plaster	Gypsum plaster	27	25.000 kg		74.552	267.642	0.803			0.124	Per 1kg	84.529 S-P-09660	https://api.environde
Skirting board	MDF	51	1400x119x18 mm	2.400 0.119 0.018	74.552	0.003	0.261			-783	Per 1m3	-204.076 S-P-01851	https://api.environde
Architrave	MDF	51	1400x119x18 mm	2.400 0.119 0.018	74.552	0.003	0.261			-783	Per 1m3	-204.076 S-P-01851	https://api.environde
Bitumen layer	Bitumen	10	1x8 mm	8.000		82.298		12	0.022	5.57	Per 1m2	458.403 S-P-03761	https://api.environde
Timber sheathing boards	Timber	28	2240x1220x18 mm	2.440 1.220 0.018		82.298	1.481	18		-861.4	Per 1m3	-1276.055 S-P-01850	https://uk.westfraser
Cast iron beam	Iron			ŝ						;	1 F		
ns	Imper	8 8		0.225		02.290	3.333	222		oko-	Perimo	-2320.490 S-P-UZ 150	nups://api.environge
Retroactive insulation between joists	Glass mineral blowing wool	92	1200x550x250 mm	1.200 0.550 0.250		82.298	15.184	225	0.04	1.13	Per 1m2	92.997 S-P-10890	https://api.environde
Plasterboard	Gypsum plasterboard	29	1200x2400x12 mm	1.200 2.400 0.012		82.298	0.988	12	0.25	1.32 F	Per 0.039m3	33.426 S-P-09656	https://api.environde
Plaster		8	25.000 kg			82.298	0.247	3	0.18	0.124	Per 1kg	25.992 S-P-09660	https://api.environde
Timber floor boards		152	2400x225x18 mm	2.400 0.225 0.018		82.298	1.481			-861.4	Per 1m3	-1276.055 S-P-01850	https://uk.westfraser
Timber purlins	Timber	55	3600x225x75 mm	3.600 0.225 0.075		82.298	3.333			869-	Per 1m3	-2326.496 S-P-02150	https://api.env
Retroactive insulation between		92	1200x550x250 mm	0.550		82.298	15.184			1.13	Per 1m2	92.997 S-P-10890	https://api.environde
Plasterboard	Gypsum	29	1200x2400x12 mm	1.200 2.400 0.012		82.298	886.0			1.32 F	Per 0.039m3	33.426 S-P-09656	https://api.environde
Plaster	Gypsum plaster	8	25.000 kg			82.298	0.247			0.124	Per 1kg	25.992 S-P-09660	https://api.environde
Timber floor boards		152	2400x225x18 mm	2.400 0.225 0.018		82.298	1.481			-861.4	Per 1m3	-1276.055 S-P-01850	https://uk.westfraser
Cast iron beam	Iron												
Timber purlins	Timber	55	3600x225x75 mm	0.225		82.298	3.333			-698	Per 1m3	-2326.496 S-P-02150	https://api.env
Retroactive insulation between ioists	Glass mineral blowing wool	92	1200x550x250 mm	1.200 0.550 0.250		82.298	15.184			1.13	Per 1m2	92.997 S-P-10890	https://api.environde
Aggregate	Crushed												

P R E C E D E N T

LEFT

Fig 11. John Ruskin, Study of a Piece of Brick, to show Cleavage in Burnt Clay. 1875

Fig 12. Richard Long, Stone Line. 1977.

Fig 13. Richard Long, Walking a Line in Peru. 1972

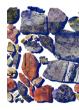
Fig 14. Robert Smithson, Asphalt Rundown, 1968

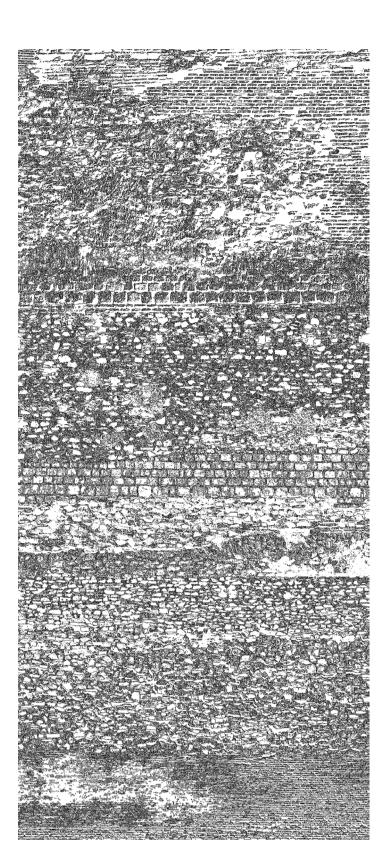
Fig 15. Lydia Musco, Sixth Unconformity. 2020

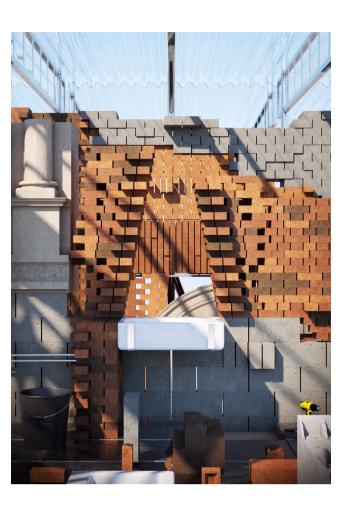
Fig 16. 100 Stones found in Hackney, arranged according to volume and mass 2024 (Author's Own).

Fig 17. 100 Stones from in Hackney, arranged randomly and using traditional dry stone walling techniques. 2024 (Author's Own).

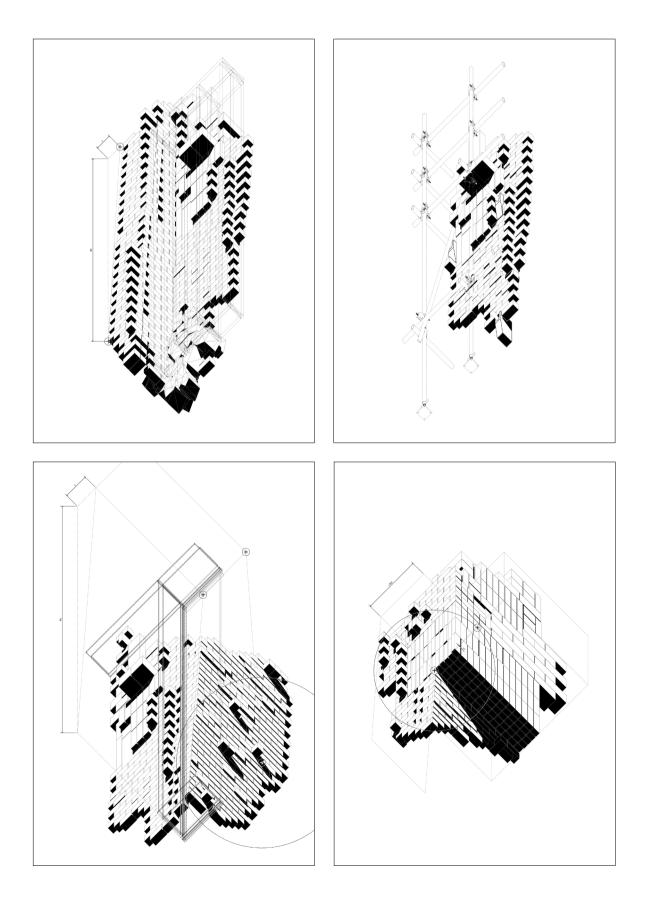
R I G H T

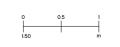

		<i>(</i> *	4	Ø	4	1	•		1
		۵	۲	*	•	٠	4	÷	6
	٩	٩	٠	679	Ø	÷	•		4
and the second se	۲		1	٩	đ	Ø	•	•	,
9	۲	ø	٢	3	ø	ŧ	ê		٠
	()	5	Ċ	4	ä	•	٠	•	,
		8	í	C	Ø	•	¢	,	1
	P		۲	1		0	0	,	1
		۲	ß	6	٩	۵	ø		٠
		٢	۲	ſ	٩	ø			ë

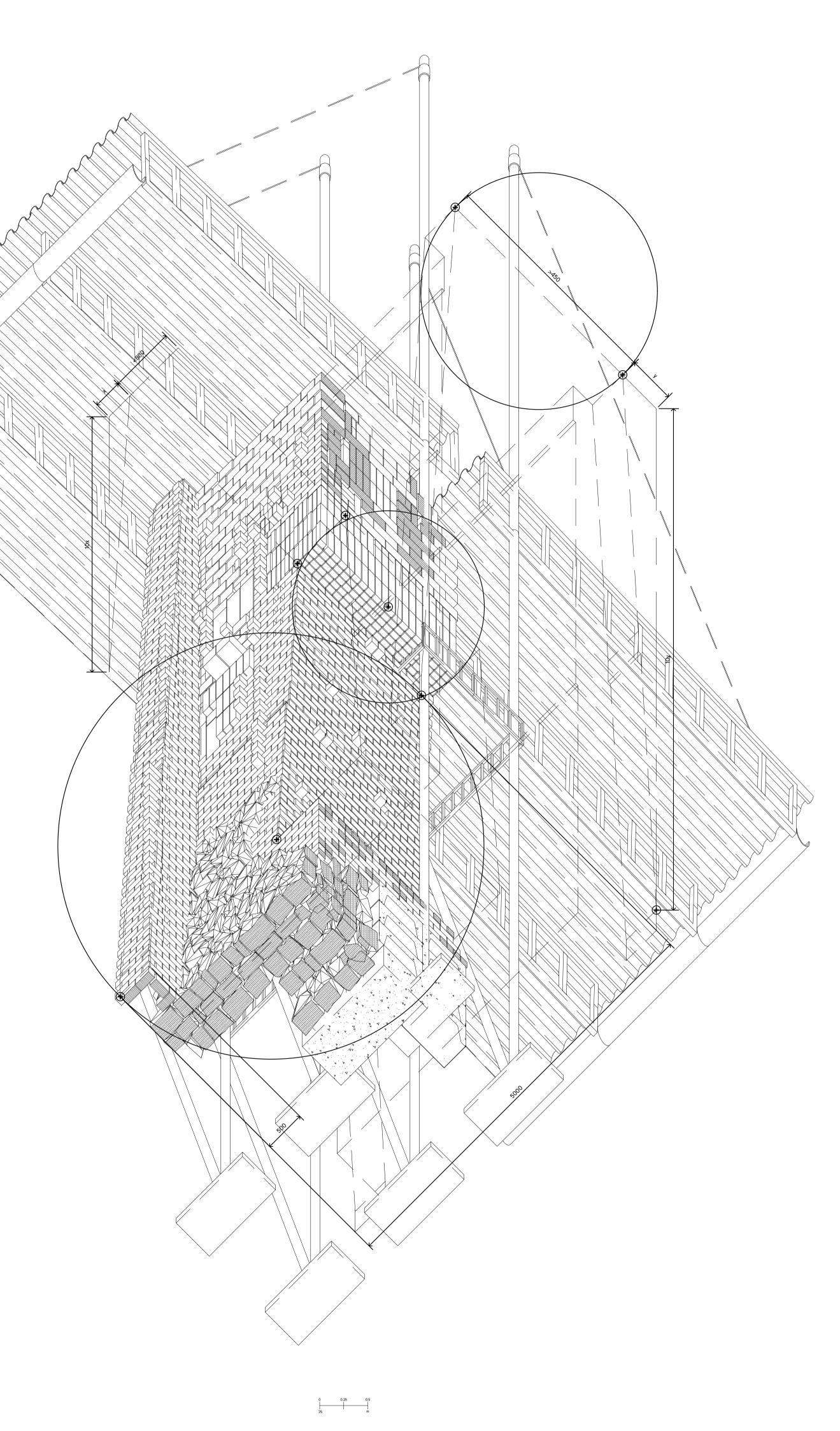


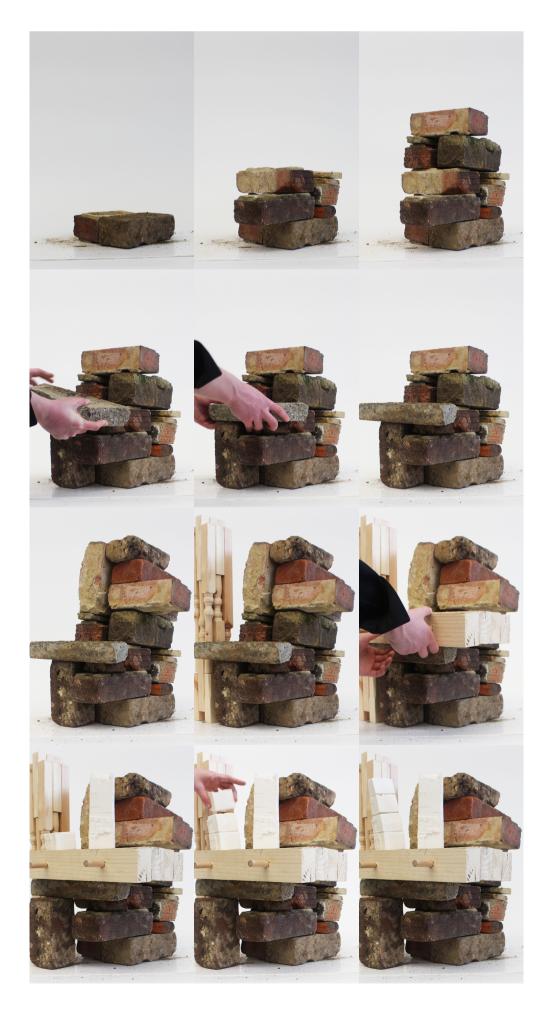


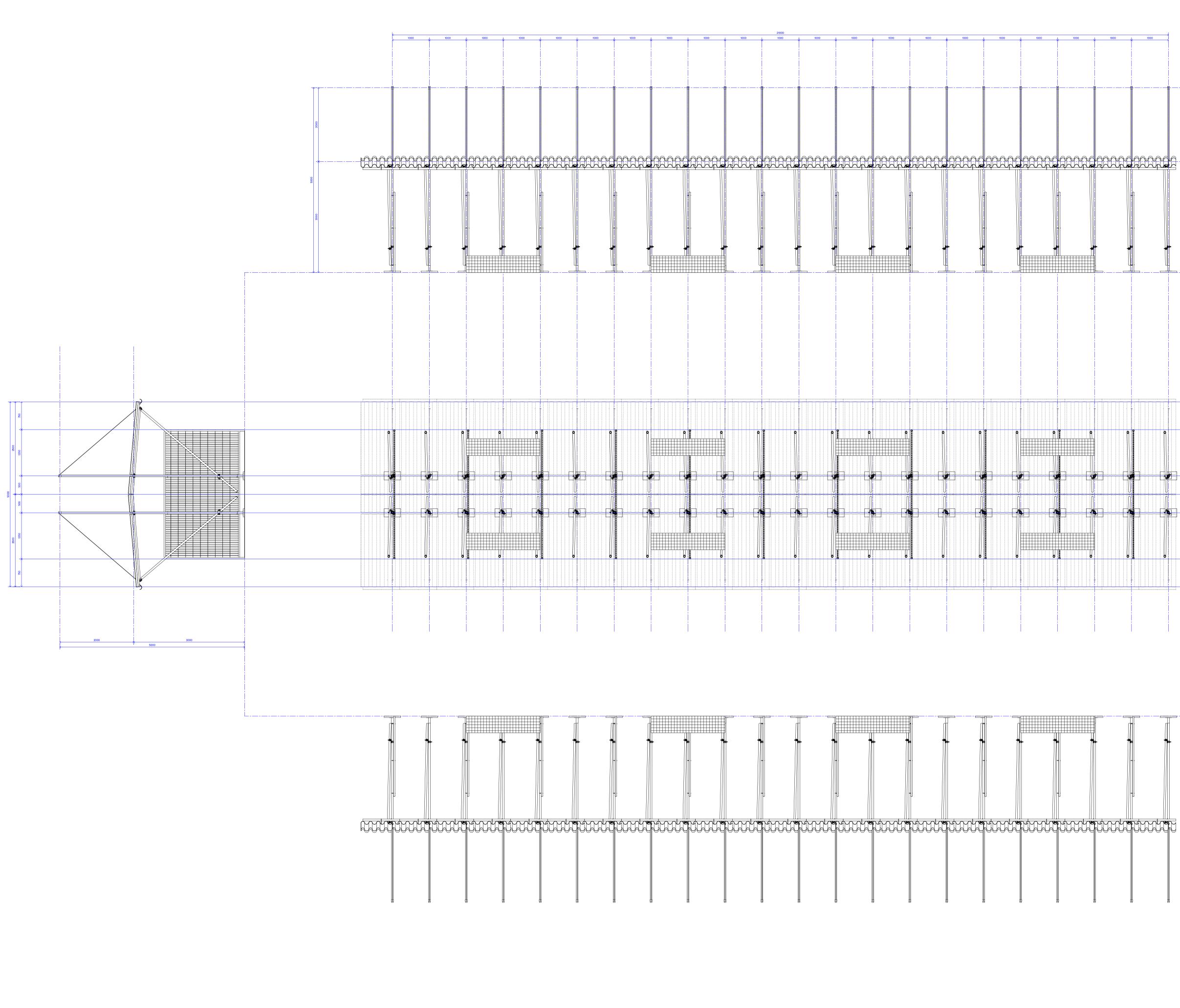
F R A G M E N T

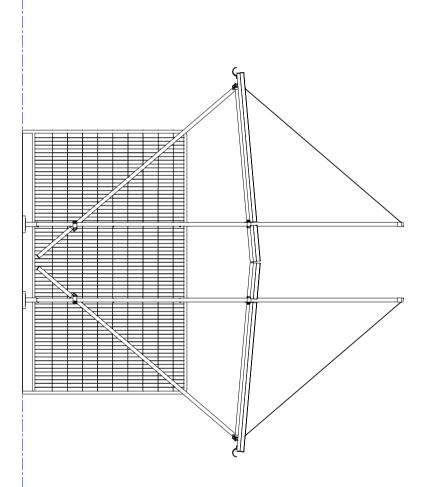

LEFT


Fig 18. Framgment view (Author's Own).

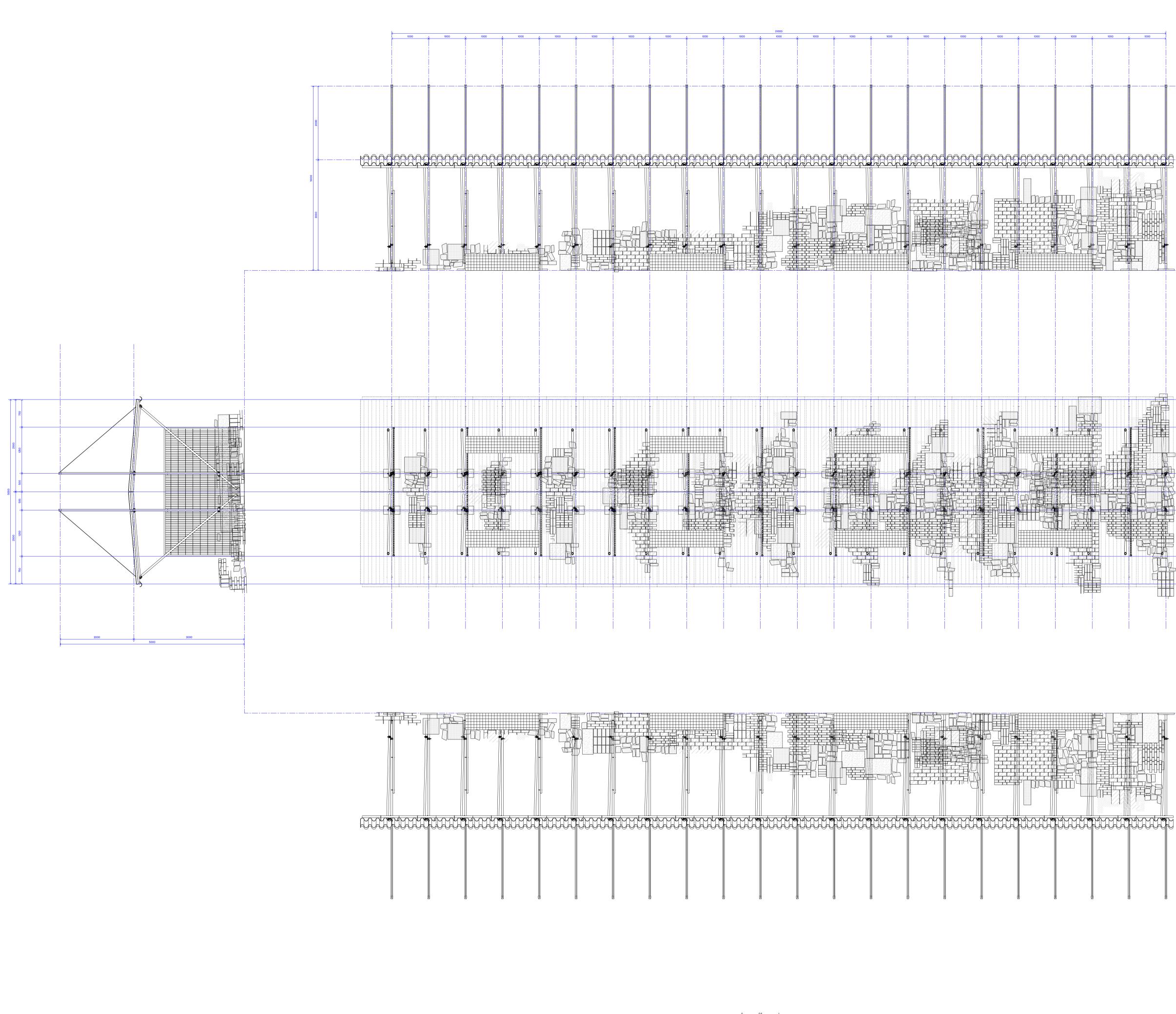

Fig 19. Construction strategies for a waste assemblage: batter, putlog holes, apertures, lintels. 1:50. (Author's Own). Fig 20. Proposed construction fragment. 1:25 (Author's Own).

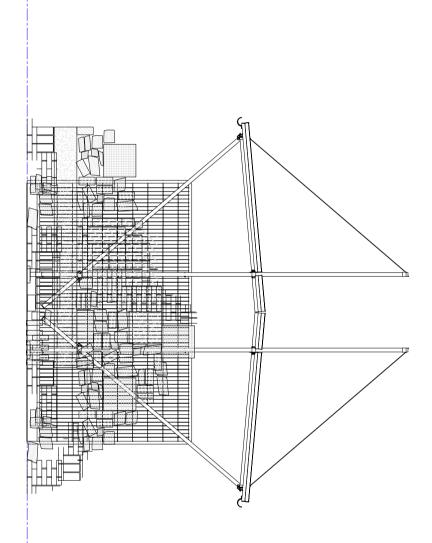

Fig 21. Testing a waste construction strategy. 1:1. (Author's Own)


R I G H T



D R A W I N G S 0 1


		1000
		00
		1000
		<u> </u>
		1000
		1000
		*
		+
		1000
		;
		<u>+</u>
		1000
		+
		1000
	ŶŬŶ	1000
		*
		1000
		*
		1000
		1000
		1000
		+
		1000
		*
	<u> </u>	1000



1

A W I N D R G S 0

2

